AI Assisted Mobility Management for Cellular Connected UAVs
Tid: Fr 2025-01-31 kl 10.00
Plats: Ka-Sal C, Kistangangen 16, Kista
Videolänk: https://kth-se.zoom.us/j/61632995144
Språk: Engelska
Ämnesområde: Telekommunikation
Respondent: Irshad Ahmad Meer , Kommunikationssystem, CoS
Opponent: Professor Sinem Sinem Coleri, Koc University
Handledare: Cicek Cavdar, Radio Systems Laboratory (RS Lab); Mustafa Özger, Radio Systems Laboratory (RS Lab); Ki Won Sung, Radio Systems Laboratory (RS Lab)
QC 20250102
Abstract
Obemannade luftfarkoster (UAV:er) som är anslutna till mobilnätverk medför unika utmaningar och möjligheter inom mobilitetshantering som skiljer sig från dem för markbundna användare. Denna avhandling presenterar ett omfattande tillvägagångssätt för att optimera UAV-integration med mobilnätverk.
Vi undersöker först de särskilda behoven av mobilitetshantering för cellulärt anslutna UAV:er. Till skillnad från mobilitetshantering för markanvändare, som främst fokuserar på att förhindra radiolänkfel vid cellkanter, upplever UAV:er fragmenterad och överlappande täckning med siktlinje till flera markbasstationer (BS:er). Därför måste mobilitetshanteringen för UAV:er inte bara hantera länkstabilitet utan även minimera onödiga överlämningar och säkerställa bibehållen tjänstetillgänglighet, särskilt i uppströmskommunikation.
För att hantera dessa utmaningar föreslår vi både modellbaserade och modellfria algoritmer specifikt utformade för UAV-mobilitetshantering. Vi utökar problemet genom att integrera UAV-ruttplanering med trådlösa mål, inklusive störningshantering, minskad fördröjning och minimerade överlämningar. Detta resulterar i en gemensam optimeringsram för UAV-ruttplanering, överlämningshantering och radioresurstilldelning. För att lösa detta multiobjektivproblem utvecklar vi en algoritm baserad på djup förstärkningsinlärning (DRL) som kombinerar uppdragsbaserad ruttplanering med nätverksdrivna justeringar, vilket optimerar resursallokering och överlämningshantering.
Vidare behandlar vi mobilitetshantering i multikonnektivitetsscenarier där UAV:er betjänas av kluster av distribuerade basstationer. När UAV:er rör sig måste de servande BS-klustren dynamiskt omkonfigureras, vilket kräver samordnad resursallokering under strikta och tidskänsliga tillförlitlighetskrav. Vi föreslår ett centraliserat, fullt distribuerat och hierarkiskt DRL-baserat tillvägagångssätt för att uppnå tillförlitlig anslutning, minska strömförbrukningen och minimera frekvensen av klusteromkonfigureringar.
Slutligen, för att utvärdera nätverkets förmåga att stödja positionsbaserad lokalisering för cellulärt anslutna UAV:er, introducerar vi en analytisk ram. Denna ram definierar B-lokaliserbarhet som sannolikheten för att en UAV tar emot tillräckliga lokaliseringssignaler från minst B markbasstationer, som uppfyller en specifik signal-till-interferens-plus-brusförhållande (SINR) tröskel. Genom att inkludera UAV-parametrar i en tredimensionell miljö tillhandahåller vi insikter om lokaliserbarhetsfaktorer som distansfördelningar, dämpning, interferens och SINR.