Till innehåll på sidan
Till KTH:s startsida

Biopolymer Networks from Terrestrial and Aquatic Biomasses

Tid: Må 2025-06-02 kl 10.00

Plats: F3 (Flodis), Lindstedtsvägen 26 & 28, Stockholm

Språk: Engelska

Ämnesområde: Fiber- och polymervetenskap

Respondent: Alina E. M. Schmidt , Fiber- och polymerteknologi, AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology

Opponent: Professor Pedro Fardim, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Leuven, Belgium

Handledare: Professor Ulrica Edlund, Polymerteknologi, AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology; Professor Agneta Richter-Dahlfors, Fiber- och polymerteknologi, AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology

Exportera till kalender

QC 20250506

Abstract

Dagens hållbarhetsutmaningar kräver mer än bara nya material – de kräver ett nytt sätt att tänka kring resurser vi redan har. Denna avhandling utforskar möjligheten att använda underutnyttjade biomassor – specifikt jordbruksgrödan Lupinus angustifolius (lupin) och den marina makroalgen Ulva fenestrata (Ulva) – som alternativa råvaror för biobaserade material. Dessa två biomassor valdes utifrån sin dubbla funktionalitet: båda odlas redan idag för livsmedelsändamål, medan resterande oätliga delar förblir till stor del outforskade.Genom att kombinera strukturbiologi, bioprocessteknik, materialvetenskap och avbildningsteknik etableras ett interdisciplinärt ramverk för karakterisering och omvandling av biomassa. Kartläggning och avbildning av biopolymerer med multimodal fluorescensmikroskopi och optotracing avslöjade vävnadsarkitekturen och den naturliga fördelningen av biopolymerer i olika växtdelar hos lupin och Ulva. Från lupin extraherades lignocellulosa via mild alkalisk förbehandling som sedan defibrillerades till lignininnehållande mikrofibrillerad cellulosa (L-MFC). I Ulva upptäcktes komplexa strukturer, inklusive oligo-/polyaromatiska lager och fibrillära strukturer i rhizoidzonen, vilket föranledde en omdefinition av dess vävnadsterminologi. En metod inspirerad av vävnadsdecellularisering utvecklades därefter för att isolera en cellväggsstruktur från Ulva. Cellinnehållet avlägsnades under milda betingelser för att bevara dess naturligt endast två cellager tunna struktur och integritet. Slutligen applicerades två olika strategier för materialdesign: en bottom-up-metod för att skapa filmer av lupin-baserad L-MFC, där dess fibrillära nätverk nyttjades för strukturell organisering, och en top-down-metod för Ulva-baserade filmer där den ursprungliga vävnadsarkitekturen bevarades. De resulterande materialen uppvisade god strukturell integritet samtidigt som viktiga biopolymernätverk bevarades. Multimodal fluorescensavbildning och optotracing integrerades och anpassades som ett nytt analytiskt verktyg, vilket möjliggjorde icke-förstörande, realtids- och högupplöst analys genom hela processen från biomassa till material.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-362908