Computational Approaches to Interaction-Shaping Robotics
Tid: To 2024-09-05 kl 14.00
Plats: F3 Flodis, Lindstedtsvägen 26 & 28, Campus
Videolänk: https://kth-se.zoom.us/j/69226775403
Språk: Engelska
Ämnesområde: Datalogi
Respondent: Sarah Gillet , Robotik, perception och lärande, RPL
Opponent: Prof. Tony Belpaeme, Ghent University
Handledare: Iolanda Leite, Robotik, perception och lärande, RPL; Hedvig Kjellström, Robotik, perception och lärande, RPL
QC 20240722
Abstract
Målet med denna avhandling är att utveckla beräkningsbaserade meto-der för att generera autonoma sociala robotbeteenden som kan interagera med flera människor och dynamiskt anpassa sig för att forma deras interak-tioner. Positiva interaktioner mellan människor påverkar deras välbefinnande och är avgörande för ett meningsfullt och hälsosamt liv. I denna avhandling myntar vi termen "Interaction-Shaping Robotics"(ISR) som studerandet av robotar som formar interaktioner mellan andra aktörer, t.ex. människor, och sammanställer tidigare studier inom människ-robot-interaktion (eng. Human-Robot Interaction, HRI) samt betonar den potentiella positiva eller negativa, avsiktliga eller oavsiktliga, inverkan av dessa robotar. Tidigare studier har utforskat fenomen som indikerar på interaktionsformande förmågor hos sociala robotar, men utvecklandet av autonoma sociala robotar som kan anpassa sig för att positivt forma interaktioner mellan människor baserat på observerad människa-till-människa dynamik är fortfarande till stor del outforskat. I denna avhandling bidrar vi till den tekniska utvecklingen av sociala interaktionsformande robotar genom att utveckla heuristiker och maskininlärningsmetoder och demonstrera deras effektivitet i studier med användare. Vi fokuserar på att forma beteenden, d.v.s. balansera människors deltagande i interaktioner för att främja inkludering bland nyanlända och redan närvarande barn i ett musikspel och stödja vuxna andraspråksinlärare och modersmålstalare i ett språkspel. Särskilt när man utnyttjar maskininlärningsmetoder, behöver en effektiv interaktionsformande robot agera socialt korrekt. Vi designar heuristiker som är lämpliga by design” och fastställer genomförbarheten av autonomi för interaktionsformande robotar genom minimal perception av gruppdynamik och enkla beteenderegler. Genom att tillåta inlärning av beteenden för mer komplexa interaktioner, tillhandahåller vi en formell definition av problemet av interaktionsformande och visar att användning av imitationsinlärning (eng. imitation learning, IL) off-line förstärkningsinlärning (eng. reinforcement learning, RL), baserat på tidigare insamlad HRI-data är genomförbart utan att kompromissa med interaktionen. För att möta utmaningen att agera korrekt, utforskar vi tekniker som tillämpas innan implementering när man lär sig off-line från data och ”shielding” - en teknik inom säker RL - för att så småningom möjliggöra inlärning under implementering vid interaktion. Sammanfattningsvis visar denna avhandling genomförbarheten och utsikten av beräkningsbaserade metoder för autonoma interaktionsformande robotar och demonstrerar att dessa metoder genererar effektiva och lämpliga robotbeteenden när de balanserar deltagande för att säkerställa inkludering av alla mänskliga gruppmedlemmar.