Data-Driven Graphical Modelling and Applications in Public Transportation
Tid: Fr 2025-01-17 kl 10.00
Plats: F3 (Flodis), Lindstedtsvägen 26 & 28, Stockholm
Videolänk: https://kth-se.zoom.us/j/67216916457
Språk: Engelska
Ämnesområde: Transportvetenskap, Transportsystem
Respondent: Qi Zhang , Transportplanering
Opponent: Associate Professor Carlos M. Lima Azevedo, Department of Technology, Management and Economics, Technical University of Denmark
Handledare: Docent Zhenliang Ma, Transportplanering; Professor Erik Jenelius, Transportplanering, Centrum för transportstudier, CTS
QC 20241203
Abstract
Effektiv kollektivtrafik är avgörande för att minska trängsel, minska koldioxidutsläppen och säkerställa rättvis tillgång till jobb och tjänster. Med modern teknik har vi nu tillgång till stora mängder kollektivtrafikdata, inklusive passagerarrörelser, fordonsrörelser och sensorgenererad information. Den kunskap som döljs bakom dessa data har stor potential att förbättra transportplanering, drift och styrning. Att effektivt representera och organisera, samt att extrahera användbar information från sådan data för att ta itu med kollektivtrafikproblem är fortfarande en utmaning.
Grafiska modeller har fått stor uppmärksamhet för sina styrkor inom datarepresentation, kunskapssammankoppling och visualisering av komplexa strukturer. Kunskapsgrafer och kausala grafer är två distinkta typer av grafiska modeller och allmänt tillämpade inom olika domäner (t.ex. sociala nätverksanalyser, läkemedelsutveckling och rekommendationssystem, etc.). Kunskapsgrafer är bra på att organisera och koppla samman enorma mängder data och kunskap, avslöja komplexa samband och möjliggöra kunskapsutvinning och inferens (svara på "vad" och "hur"-frågor). Kausala grafer är kraftfulla för att identifiera och analysera orsakssamband, vilket möjliggör en djupare förståelse av de underliggande mekanismerna som driver observerade datamönster (svara på "varför"-frågor).
Specifikt syftar avhandlingen till att föreslå två datadrivna grafiska modeller (d.v.s. kunskapsgrafen och kausalgrafen) och utforskar deras tillämpningsscenarier i kollektivtrafiken. Den konstruerar en mobilitetskunskapsgraf för att representera och organisera mobilitetsdata, bryta färdmönster mellan stationer och validera dess värde i slutledning av resemål och uppskattning av användarstations uppmärksamhet. Sedan, för att få en djupare förståelse av transportoperationer, utvecklar avhandlingen kausala upptäcktsmodeller för statisk data för att sluta sig till orsakssamband och generera kausala grafer för att analysera variablerna som orsakar bussförseningar. Baserat på kausalgrafen kvantifierar den bidraget från varje variabel samtidigt som orsakssambanden beaktas för att stödja utvecklingen av målstrategier för att mildra förseningar. Dessutom utvecklar avhandlingen också en tidsseriemodell för orsaksupptäckt för att förstå bussfördröjningsutbredningsmönster och effekter inom kollektivtrafiksystemet ur ett systemperspektiv.
Paper I och II fokuserar på dataorganisation och kunskapsinferens, och konstruerar en mobilitetskunskapsgraf (MKG) och utforskar dess tillämpningar i kollektivtrafik. Artikel I introducerar konceptet MKG och föreslår ett ramverk för att konstruera det från smartkortdata genom att fånga spatiotemporala färdmönster mellan stationer med både regelbaserade och neurala nätverksbaserade nedbrytningsmetoder. Det validerar MKG-ramverket och demonstrerar dess värde i att sluta resmål med hjälp av enbart tap-in-poster. Paper II utforskar en annan transportapplikation, och föreslår en metod för att uppskatta den "riktiga" användarstationens uppmärksamhet från delvis observerade stationsbesöksdata. Den använder MKG för att fånga latenta spatiotemporala resorberoenden mellan stationer för att förbättra uppskattningsprocessen genom att ta itu med saknade värden och kallstartsproblem. Ramverket är validerat med både syntetiska och verkliga data, vilket visar värdet av MKG vid uppskattning av användarstations uppmärksamhet.
Paper IV-VI fokuserar på forskning av kausala grafer och deras tillämpningar i kollektivtrafiken. Innan man genomför orsaksanalysen för bussförseningar, genomför Paper III en empirisk studie som undersöker de heterogena effekterna av olika faktorer på bussens ankomstförseningar operativa variabler och utvecklar kausala upptäcktsmetoder för statiska data för att analysera de variabler som orsakar bussförseningar och utvärdera deras prestanda utifrån statistisk dataanpassning och kausalitetstolkningsmetoden för att analysera orsakerna till bussförseningar kausal graf som genereras i Paper IV, Paper V utvecklar en kausalitetsbaserad Shapley-värdesmetod för att kvantifiera bidraget från varje variabel till bussförseningar för att stödja effektivt transportbeslut. Resultaten korsvalideras med den konventionella modellen (t.ex. regressionsmodeller ) för att avslöja skillnaden mellan korrelationsbaserade och kausalitetsbaserade analysmetoder. Dessutom utvecklar Paper VI en tidsseriekausal upptäcktsmodell för att sluta sig till orsakssamband mellan busshållplatser och generera den spatiotemporala fördröjningsutbredningens kausala grafen från tidsseriens busshållplatsfördröjningsdata. Sedan införlivar den komplex nätverksteori för att analysera bussfördröjningens utbredningsmönster och effekter inom kollektivtrafiksystemet.