Till innehåll på sidan
Till KTH:s startsida

Accuracy, efficiency and robustness for rigid particle simulations in Stokes flow

Tid: Fr 2024-04-26 kl 10.00

Plats: F3 (Flodis), Lindstedtsvägen 26 & 28, Stockholm

Språk: Engelska

Ämnesområde: Tillämpad matematik och beräkningsmatematik, Numerisk analys

Respondent: Anna Broms , Numerisk analys, NA

Opponent: Professor (Reader in the UK system) Eric Keaveny, Dept. of Mathematics, Imperial College, London

Handledare: Professor Anna-Karin Tornberg, Numerisk analys, NA; Universitetslektor Mattias Sandberg, Numerisk analys, NA

Exportera till kalender

Abstract

Avhandlingen behandlar simuleringstekniker för system av stela partiklar på nano- till mikroskala i en viskös vätska. Sådana system har en stor spännvidd av tillämpningsområden både i naturen och i industrin. Då vätskans tröghet anses försumbar utgör uppsättningen av partiella differentialekvationer (PDEer) känd som Stokes ekvationer en modell för vätskans fysik. För att studera dynamiska förlopp behöver PDEerna lösas vid varje given tidpunkt, givet partikelkonfigurationen och eventuell extern påverkan mellan partiklarna. De resulterande hastigheterna på partiklarna används för att uppdatera dess positioner och ekvationerna kan sedan lösas på nytt. För att ett simuleringsresultat av ett fysiskt system ska vara tillförlitligt är det viktigt att kontrollera olika felkällor. Vi fokuserar specifikt på de numeriska fel som uppstår när Stokes ekvationer löses approximativt och felet från tidsstegningen, alltså uppdateringen av koordinater över tid.               

Interaktionerna i vätskan är utmanande att hantera: de avtar långsamt med ökande partikelavstånd och är dyra att lösa upp vid nära kontakt. Det sistnämnda är en konsekvens av de starka lubrikationskrafter som relativ rörelse mellan partiklar resulterar i på korta avstånd. PDEerna kan omformuleras som randintegralekvationer på partiklarnas ytor. Vi behandlar två alternativa men relaterade tekniker som möjliggör billigare simuleringar. Den stela multiblob-metoden bygger på regularisering och kan hantera stora system av partiklar med generell geometri. Två förbättringar utvecklas: den basala felnivån relaterar till diskretiseringen av partiklarna och sätts genom att förberäkna lösningen till ett litet optimeringsproblem för varje unik partikeltyp. Noggrannheten för nära interaktion förbättras sedan med hjälp av parkorrektioner. Genom en alternativ metod baserad på fundamentallösningar presenterar vi en ny snabb teknik som skalar linjärt med antalet partiklar. För cirklar och sfärer kan noggrannheten kontrolleras oberoende av partikelavstånd genom att introducera en uppsättning reflektionspunkter för varje par av partiklar nära varandra, som väl kan representera de lubrikationskrafter som uppstår.        

I ett Stokesflöde kan partiklar varken kollidera eller överlappa och vårt arbete relaterat till tidsstegning behandlar kontaktundvikande algoritmer. Vi utvecklar en ny optimeringsbaserad strategi som garanterar att partiklar förblir kontaktfria i 3D. En sådan teknik är nödvändig för att kunna studera partiklar över långa tidsintervall.                

Kontrollerad noggrannhet kan tillsammans med robust tidsstegning möjliggöra att simuleringar kan komplettera fysiska experiment så att en ökad förståelse av partikelsystemen kan leda till utveckling inom exempelvis materialvetenskap, biomedicin och miljövetenskap.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-344768