High Performance Finite Element Methods with Application to Simulation of Vertical Axis Wind Turbines and Diffusion MRI

Tid: On 2019-12-04 kl 10.15

Plats: F3, Lindstedtsvägen 26, Stockholm (English)

Ämnesområde: Tillämpad matematik och beräkningsmatematik Biologisk fysik Datalogi Teknisk mekanik Matematik Biologisk och biomedicinsk fysik

Respondent: Van Dang Nguyen , Beräkningsvetenskap och beräkningsteknik (CST)

Opponent: Professor Mats Larson, Umeå universitet, Umeå, Sverige

Handledare: Professor Johan Hoffman, Numerisk analys, NA; Associate Professor Johan Jansson, Beräkningsvetenskap och beräkningsteknik (CST)

Abstract

Finita elementmetoder har utvecklats under årtionden, och har, till- sammans med tillväxten i datorkraft, blivit allt viktigare för att utföra storskaliga simuleringar inom både akademin och industrin. Målet med denna avhandling är att utveckla finita elementmetoder med högprestanda, med särskilt fokus på två konkreta applikationer; beräknings- strömningsdynamik (eng. Computational Fluid Dynamics (CFD)) för simulering av turbulent flöde runt en vindturbin, och beräkningar inom diffusionsmagnetresonanstomografi (eng. Computational diffusion magnetic resonance imaging (CDMRI)). Denna avhandling innehåller bidrag till ovanstående områden i form av såväl nya numeriska metoder för högprestandaberäkningsramverk och testad effektiv programvara vilken publicerats som öppen källkod som del av plattformen FEniCS/FEniCS-HPC. Mer specifikt presenterar vi fyra huvudbidrag i detta avhandlingsarbete.

Först utvecklar vi en DFS-ALE-metod som kombinerar Direkt Fini- ta Elementsimulering (DFS) med den Arbiträra Lagrange-Eulermetoden (ALE) för att lösa Navier-Stokes ekvationer för en roterande turbin. Vår metod är en förbättrad variant med dualbaserad a posteriori felkontroll och automatiserad adaptering av beräkningsnätet. Turbulenta gränsskikt modelleras med ett sliprandvillkor för att undvika full upplösning av problemet, vilket är omöjligt även med de mest kraftfulla datorer som finns att tillgå idag. Metoden valideras mot experimentell data, med god överensstämmelse.

Därnäst föreslår vi en enhetspartitions finita element metod för att tackla interfaceproblem. Inom CFD möjliggör detta att påtvinga ett sliprandvillkor på konforma inre interface för en fluidstrukturinter-kationsmodell. Inom CDMRI bidrar det med att överkomma svårigheterna med att påtvinga mikroskopisk heterogenitet av den biologiska vävnaden, och möjliggör effektiv lösning av Bloch-Torrey ekvationen i heterogena domäner. Metoden gör det enklare att göra en rättfram implementering i FEniCS/FEniCS-HPC. Metoden valideras mot referenslösnignar, och implementationen visar på stark parallel skalning (eng. strong parallel scaling).

Sedan föreslår vi en finita elementdisktretisering på mångfalder för att effektivt kunna simulera diffusions-MRI-signaler i områden med en tunn geometrisk struktur. Metoden bidrar med att signifikant reducera simuleringstiden, minnesåtgång och svårigheter associerade med genereringen av beräkningsnät, utan att påverka precisionen i beräkningarna. Detta öppnar för möjligheter att simulera komplicerade strukturer till låg kostnad, för att bättre förstå diffusionsmagnettomografi i hjärnan.

Tilll sist föreslår vi ett effektivt portabelt simuleringsramverk som integrear nya avancerade tekniker inom både matematik och datave- tenskap för att möjliggöra för användaren att utföra simuleringar med datormolnberäkningsteknologin. Simuleringsramverket består av Python, IPython och C++-lösare som används tillsammans antingen i en webbläsare med Google Colaboration notebooks eller på Google Cloud-plattformen med MPI-parallellisering.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263200

Tillhör: Skolan för elektroteknik och datavetenskap (EECS)
Senast ändrad: 2019-11-12