Mobility Knowledge Graph and its Application in Public Transport
Tid: Må 2023-12-11 kl 14.15
Plats: M108, Brinellvägen 23, Stockholm
Videolänk: https://kth-se.zoom.us/j/63877410858
Språk: Engelska
Ämnesområde: Transportvetenskap Transportsystem
Licentiand: Qi Zhang , Transportplanering
Granskare: Associate Professor Carlos Lima Azevedo, Department of Technology, Management and Economics,Technical University of Denmark
Huvudhandledare: Universitetslektor Zhenliang Ma, Transportplanering; Docent Erik Jenelius, Transportplanering, Centrum för transportstudier, CTS
QC231116
Abstract
Effektiv planering, drift och kontroll av kollektivtrafik är beroende av end jup förståelse för mänsklig rörlighet i stadsområden. Tillgången till omfattande och varierande källor av rörlighetsdata, såsom data från smarta kort och GPS-data, ger möjligheter att kvantitativt studera individuellt beteende och kollektiva rörlighetsmönster. Att analysera och organisera dessa stora mängder data är dock en utmanande uppgift. Kunskapsgrafen (KG) är en grafba serad metod för kunskapsrepresentation och organisering som har tillämpats framgångsrikt inom olika områden, men användningen av KG inom urbana rörlighetsområden är fortfarande begränsad. För att ytterligare utnyttja rörlighetsdata och utforska mänskliga rörlighetsmönster har de inkluderade artiklarna konstruerat Mobility Knowledge Graph (MKG), en allmän inlärningsram, och visat dess potentiella tillämpningar inom kollektivtrafiken.
Artikel I introducerar begreppet MKG och föreslår en inlärningsram för att konstruera MKG från data från smarta kort i kollektivtrafiknätverk. Ramverket fångar de rumsligt-temporala resmönstersambanden mellan stationer genom att använda både regelbaserade linjära dekomponeringsmetoder och neurala nätverksbaserade icke-linjära dekomponeringsmetoder. Artikeln validerar MKG-konstruktionsramverket och utforskar värdet av MKG för att förutsäga enskilda resmål med endast tap-in-register.
Artikel II föreslår en tillämpning av uppskattning av användar-stations uppmärksamhet för att förstå mänsklig rörlighet i stadsområden, vilket underlättar efterföljande tillämpningar såsom individuell rörlighetsförutsägelse och platsrekommendationer. För att uppskatta den ’verkliga’ användar-stations uppmärksamheten från data om besöksantal på stationer föreslår artikeln en matrisdekomponeringsmetod som fångar både användarlikhet och station-stationsrelationer med hjälp av Mobility Knowledge Graph (MKG). En neural nätverksbaserad icke-linjär dekomponeringsmetod användes för att extrahera MKG-relationer som fångar de latenta rumsligt-temporala resberoendena. Det föreslagna ramverket valideras med hjälp av syntetiska och verkliga data och visar på dess betydande värde för att bidra till inferens av användar-stationsuppmärksamhet.