Optimal Control and Coordination of Autonomous Intelligent Systems by Edge Computing
Tid: Må 2025-03-31 kl 13.00
Plats: Gladan, Brinellvägen 85, Stockholm
Språk: Engelska
Ämnesområde: Maskinkonstruktion
Respondent: Kaige Tan , Mekatronik och inbyggda styrsystem
Opponent: Associate Professor Quanyan Zhu, New York University
Handledare: Universitets lektor Lei Feng, KTH-centrum inom inbyggda system, ICES, Mekatronik och inbyggda styrsystem; Universitets lektor Fredrik Asplund, Mekatronik och inbyggda styrsystem
Abstract
Autonoma intelligenta system (AIS) omvandlar olika sektorer genom att integrera avancerad reglerteknik, artificiell intelligens och cyberfysiska system. Utvecklingen av styrsystem för AIS står dock inför betydande utmaningar, såsom att säkerställa realtidsrespons, utforma adaptiva regulatorer för dynamiska miljöer och samordna multiagentsystem under osäkerheter. Dessa utmaningar är särskilt framträdande i resursbegränsade miljöer, där det är avgörande att balansera beräkningskrav och realtidsprestanda.
För att hantera dessa utmaningar utnyttjar denna avhandling edge computing för att förbättra systemprestanda och möjliggöra data-drivna metoder samt optimal styrning för komplexa AIS-applikationer. Edge computing innebär att beräknings-, kommunikations- och lagringsresurser flyttas närmare datakällorna, vilket möjliggör låglatensbearbetning, realtidsanpassning och skalbara lösningar. Detta tillvägagångssätt erbjuder två betydelsefulla fördelar: (1) avlastning av beräkningstunga uppgifter till närliggande edge-servrar för att säkerställa responsiva och effektiva operationer trots begränsade resurser ombord, och (2) decentraliserad samordning mellan flera agenter genom att utnyttja edge-servrar som tillförlitliga noder, vilket förbättrar systemets skalbarhet, robusthet och collaborative decision-making.
Genom att dra nytta av edge computing och dess möjligheter till beräkningsavlastning och decentraliserad samordning undersöker denna avhandling hur dessa funktioner kan användas för att övervinna AIS-begränsningar inom optimal reglering och koordination. De huvudsakliga bidragen i avhandlingen inkluderar: (1) utveckling av algoritmer för tillståndsskattning och data-driven optimal styrning, vilket möjliggör mer exakt skattning och styrning av icke-linjära, tidsvarierande system; (2) design av edge-baserade algoritmer för beräkningsavlastning, vilket möjliggör realtidsanpassad reglering och inlärning genom att distribuera beräkningstunga uppgifter och därmed balansera latens och resursbegränsningar; samt (3) introduktion av decentraliserade optimeringsramverk för multiagentsystem, vilket förbättrar skalbarhet, robusthet och koordination under kommunikationsbegränsningar genom att utnyttja edge-servrar som pålitliga noder för effektivt samarbete och beslutsfattande. Alla bidrag har validerats genom fallstudier inom mjukrobotik och uppkopplade autonoma fordon, vilket påvisar deras effektivitet och förbättringar jämfört med befintliga metoder.
Sammanfattningsvis stärker denna avhandling AIS genom att adressera realtidsberäkningsutmaningar och möjliggöra optimal, data-driven styrning och decentraliserad koordination. Genom att integrera edge computing förbättras AIS effektivitet, skalbarhet och anpassningsförmåga, vilket öppnar för lovande tillämpningar inom autonom mobilitet och andra dynamiska områden.