Till innehåll på sidan
Till KTH:s startsida

Scientific Machine Learning for Forward and Inverse Problems

Physics-Informed Neural Networks and Machine Learning Algorithms with Applications to Dynamical Systems

Tid: Må 2025-05-26 kl 13.00

Plats: Kollegiesalen, Brinellvägen 8, Stockholm

Videolänk: https://kth-se.zoom.us/j/66482272586

Språk: Engelska

Ämnesområde: Datalogi

Respondent: Federica Bragone , Beräkningsvetenskap och beräkningsteknik (CST)

Opponent: Adjunct Professor Marta D'Elia, Stanford University, Stanford CA, USA

Handledare: Professor Stefano Markidis, Beräkningsvetenskap och beräkningsteknik (CST); Doctor Kateryna Morozovska, Reglerteknik; Tor Laneryd, Hitachi Energy, Västerås, Sweden; Michele Luvisotto, Hitachi Energy, Västerås, Sweden

Exportera till kalender

QC 20250505

Abstract

Scientific Machine Learning (SciML) är ett lovande område som kombinerar datadrivna modeller med fysiska lagar och principer. Ett nytt exempel är tillämpningen av artificiella neurala nätverk (ANN) för att lösa ordinära differentialekvationer (ODE) och partiella differentialekvationer (PDE). Ett av de senaste tillvägagångssätten inom detta område är PINN (Physics-Informed Neural Networks), som kodar de styrande fysikaliska ekvationerna direkt i neuronnätets arkitektur. PINN kan lösa både framåtriktade och inversa problem, lära sig lösningen på differentialekvationer och härleda okända parametrar eller till och med funktions former. Därför är de särskilt effektiva när delvis kända ekvationer eller ofullständiga modeller beskriver verkliga system.

Differentialekvationer möjliggör en matematisk formulering av grundläggande fysiska lagar. ODE:er och PDE:er används för att modellera beteendet hos komplexa och dynamiska system inom många vetenskapliga områden. I verkligheten är många problem antingen för komplexa för att kunna lösas exakt eller innehåller ekvationer som inte är helt kända. I dessa fall förlitar vi oss på numeriska metoder för att approximera lösningar. Trots att dessa metoder kan vara mycket exakta är de ofta beräkningsmässigt dyra, särskilt för stora, olinjära eller mångdimensionella problem. Det är därför viktigt att utforska alternativa metoder som SciML för att hitta effektivare och mer skalbara lösningar.

I denna avhandling presenteras en serie tillämpningar av SciML-metoder för att identifiera och lösa verkliga system. Först demonstrerar vi hur PINN kombinerat med symbolisk regression kan användas för att återskapa styrande ekvationer från gles observationsdata, med fokus på cellulosanedbrytning i krafttransformatorer. PINNs används sedan för att lösa framåtriktade problem, särskilt 1D- och 2D-värmediffusionsekvationerna, som modellerar termisk distribution i transformatorer. Dessutom utvecklar vi ett tillvägagångssätt för optimal sensorplacering med hjälp av PINN som förbättrar datainsamlingseffektiviteten. I ett tredje användnings område undersöks hur tekniker för dimensionsreduktion, såsom Principal Component Analysis (PCA), kan tillämpas för att förklara och visualisera mångdimensionell data, där varje observation består av ett stort antal variabler som beskriver fysiska system. Med hjälp av dataset om cellulosa nanofibrillärer CNF) av olika material och koncentrationer används maskininlärningstekniker (ML) för att karakterisera och tolka systemets beteende.

Den andra delen av avhandlingen fokuserar på att förbättra skalbarheten och robustheten hos PINN. Vi föreslår en strategi för förträning som optimerar de initiala vikterna, vilket minskar stokasticitetsvariabiliteten för att hantera träningsinstabilitet och höga beräkningskostnader i problem med fler dimensioner som uppstår vid lösning av mångdimensionella eller parametriska PDE:er. Dessutom introducerar vi en tillägg för PINN, kallad $PINN, som inkluderar Bayesiansk sannolikhet inom ett ramverk för domänkomposition. Denna formulering förbättrar prestandan, särskilt vid hantering av brusiga data och flerskaliga problem.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-363009