Spatial dispersion in finite element models for ion cyclotron resonance heating
Theory and applications for toroidal plasmas
Tid: On 2025-01-29 kl 09.00
Plats: F3 (Flodis), Lindstedtsvägen 26 & 28, Stockholm
Videolänk: https://kth-se.zoom.us/j/67880732648
Språk: Engelska
Ämnesområde: Elektro- och systemteknik
Respondent: Björn Zaar , Elektromagnetism och fusionsfysik
Opponent: Senior researcher Remi Dumont, Commisariat à l'energie atomique et aux énergies alternatives (CEA), Paris, France
Handledare: Associate professor Thomas Jonsson, Elektromagnetism och fusionsfysik; Professor emeritus Jan Scheffel, Elektromagnetism och fusionsfysik
QC 20241230
Abstract
Kärnfusion kan producera stora mängder energi från vanligt förekommande grundämnen på jorden utan att släppa ut koldioxid, och ger endast upphov till små mängder radioaktivt avfall. För att atomkärnor ska slås samman under förhållanden som är relevanta för jorden krävs temperaturer som överstiger 100 000 000 °C. Vid dessa temperaturer befinner sig bränslet i ett plasmatillstånd. En vanlig metod för att värma plasman är jon-cyclotronresonans-uppvärmning (ICRH), där radiovågor skickas från en antenn på kärlets vägg in i plasmat för att resonera med de roterande jonerna. Vågutbredning och dissipation i varma magnetiserade plasman är en ickelokal effekt, där plasmats svar i en given punkt beror på partiklarnas ackumulerade acceleration längs deras banor. För att kvantifiera hur ett plasma värms upp krävs numeriska simuleringar. Målet med denna avhandling är att tillhandahålla ett numeriskt ramverk för simulering av koppling av vågen från antennen till plasmat, vågutbredning och dissipation inuti plasmat, samt accelerationen av enskilda partiklar och hur de deponerar sin energi i plasmat.
För att uppnå detta har en iterativ metod som lägger till ickelokala effekter till en i övrigt lokal modell baserad på finita elementmetoden utvecklats. Den finita elementmetoden är lämplig för att modellera oregelbundna geometrier och vågkoppling genom det kalla randplasmat, men inte det varma plasmat i mitten av maskinen. Exempel på ickelokala effekter som läggs till iterativt är modkonvertering från den snabba magnetosoniska vågen till jon-Bernstein-vågen, och upp- och nedskiftet av det parallella vågtalet. Dessutom kopplas våglösaren till en Fokker-Planck-lösare som utvärderar effekten som ICRH har på jonernas fördelningsfunktion. Modellerna som presenteras i avhandlingen är i 1D eller 2D och rotationssymmetriska, men skiljer sig inte konceptuellt från en generalisering till 3D.