US Equity REIT Returns and Digitalization
Tid: Må 2023-12-18 kl 09.00
Plats: H1, Teknikringen 33, Stockholm
Videolänk: https://kth-se.zoom.us/j/64745915450
Språk: Engelska
Ämnesområde: Fastigheter och byggande
Licentiand: Birger Axelsson , Fastighetsekonomi och finans
Granskare: Docent Peter Palm, Malmö Universitet
Huvudhandledare: Docent Han-Suck Song, Fastighetsekonomi och finans; Associate Professor Herman Donner, Fastighetsekonomi och finans
QC 20231201
Abstract
Denna licentiatuppsats är en samling av två forskningsartiklar som använder tidsserieekonometriska metoder inom finansiell ekonomi med fokus på fastighetsaktier. Den första artikeln tillämpar ekonometriska metoder på tidsseriedata för amerikanska börsnoterade fastighetsfonder, Real Estate Investment Trusts (REITs), med fokus på att uppskatta effekten av icke-konventionella penningpolitiska aktiviteter (kvantitativa lättnader och kvantitativ åtstramning) på avkastningsserierna, samtidigt som vi kontrollerar för andra viktiga makroekonomiska och finansiella variabler. Den andra artikeln fokuserar istället på att bygga modeller för prognoser av avkastningen på avkastningsserierna empiriskt, där prognosfelen för en traditionell ekonometrisk modell (ARIMA) jämförs med en modern djupinlärningsbaserad modell (LSTM).
Digitalisering, som omfattar ett brett spektrum av tekniska framsteg, är den viktigaste faktorn som vi studerar för dess inverkan på REIT-investeringar. Ett perspektiv på digitaliseringens inverkan på REITs är dess effekt på inflationen. Digitalisering har potential att öka produktiviteten och minska kostnaderna, vilket kan bidra till att hålla inflationen låg. Detta har i sin tur under de senaste decennierna varit fördelaktigt för REIT-investeringar genom lägre räntor, vilket vi delvis undersöker i den första uppsatsen.
Ett annat perspektiv är att digitaliseringen inte bara har lett, utan också förväntas leda, till betydande innovationer inom området artificiell intelligens (AI) och maskininlärning (ML), inklusive djupinlärning (DL), som är en delmängd av ML. Många forskare och professionella aktörer arbetar just nu med att utveckla modeller som kan använda stora mängder data för att göra bättre prognoser och investeringsbeslut. Om de lyckas kan dessa modeller förbättra resultatet för REITinvesteringar avsevärt. Kan DL-modeller tränas för att förbättra möjligheterna till att göra mer tillförlitliga prognoser och därmed öka chanserna till att göra mer lönsamma investeringar? Det är en fråga vi ställer oss i den andra artikeln.
Digitalisering och dess effekter på inflationen har varit ett starkt växande fält inom såväl forskning som praktisk tillämpning de senaste åren, med forskare som undersöker den potentiella inverkan av tekniska framsteg på makroekonomiska trender, vilket har legat till grund för våra studier. Den senaste tidens utveckling i den globala ekonomin har dock flyttat fokus för denna forskning, eftersom inflationsnivåerna oväntat har stigit från vad som tidigare ansågs vara en låg och stabil miljö. Som ett resultat har miljön och ramarna för vår forskning om digitalisering och inflation ändrats avsevärt, eftersom vi har försökt anpassa oss till detta föränderliga landskap.