Situation Awareness for Autonomous Agents under Limited Sensing
Tid: On 2025-06-18 kl 10.00
Plats: Kollegiesalen, Brinellvägen 6 (Tillgänglighetsanpassad entré), Stockholm
Videolänk: https://kth-se.zoom.us/j/66710325262
Språk: Engelska
Ämnesområde: Maskinkonstruktion
Respondent: José Manuel Gaspar Sánchez , Mekatronik och inbyggda styrsystem
Opponent: Professor Jonas Sjöberg, Chalmers tekniska högskola
Handledare: Professor Martin Törngren, Mekatronik och inbyggda styrsystem
Abstract
Autonoma agenter, såsom robotar och självkörande fordon, är beroende av sin förmåga att uppfatta och tolka omgivningen för att fatta välgrundade beslut och utföra handlingar i linje med sina mål. En viktig del av denna förmåga är situationsmedvetenhet, som innebär att förstå miljöns nuvarande tillstånd och förutse dess framtida utveckling. Traditionella autonoma system hanterar perception och prediktion som separata steg i en sekventiell kedja, där sensordata bearbetas till alltmer abstrakta representationer. Även om detta strukturerade tillvägagångssätt lett till stora framsteg, begränsas det av sensorbrister, inklusive skymda objekt, mätosäkerhet och ogynnsamt väder.
Denna avhandling undersöker hur prediktioner från tidigare observationer kan förbättra perceptionsalgoritmer, så att agenter kan sluta sig till saknad information, minska osäkerhet och bättre förutse förändringar. För att möjliggöra denna integration utforskas alternativa omgivningsrepresentationer som ger återkoppling mellan prediktion och perception, samtidigt som osäkerheter kan hanteras. Denna tätare koppling förbättrar beslutsfattandet, särskilt i komplexa och delvis observerbara miljöer.
Avhandlingens huvudsakliga bidrag inkluderar: (1) ett reso\-nemangs\-ramverk baserat på nåbarhet för att spåra möjliga dolda hinder; (2) dess utvidgning för att hantera fördröjd och ofullständig extern data; (3) en probabilistisk kartmetod, Transitional Grid Maps (TGM), som gemensamt modellerar statisk och dynamisk ockupation; och, (4) utvidgning av TGM för att förbättrad hantering av väderrelaterat sensorbrus.
Metoderna utvärderas i scenarier där traditionella perceptionskedjor har problem, exempelvis i skymda, mycket dynamiska och brusiga miljöer. Genom att överbrygga klyftan mellan perception och prediktion bidrar detta arbete till utvecklingen av robustare och intelligentare autonoma system.