Till innehåll på sidan

Strategies for Molecular Engineering of Macroscopic Adhesion and Integrity Focusing on Cellulose Based Materials

Tid: Fr 2019-11-22 kl 10.00

Plats: Q2, Malvinas väg 10, Stockholm (English)

Ämnesområde: Fiber- och polymervetenskap

Respondent: Andrea Träger , Fiberteknologi, Fibre Technology

Opponent: Professor Matthew Tirrell, The University of Chicago, Pritzker School of Molecular Engineering

Handledare: Professor Lars Wågberg, Fiberteknologi, VinnExcellens Centrum BiMaC Innovation, Pappers- och massateknik, Fiber- och polymerteknologi, Mekanik, Linné Flow Center, FLOW; Professor Eva Malmström, Ytbehandlingsteknik, Fiber- och polymerteknologi, Polymerteknologi, VinnExcellens Centrum BiMaC Innovation; Anna Carlmark,

Exportera till kalender

Abstract

Vår moderna livsstil utsätter ekosystemen runtomkring oss för stora påfrestningar. Ett exempel bland många är all den plast som ackumuleras i världshaven och ställer till stora problem för vattenlevande organismer. Plaster har många olika användningsområden, bland annat som förpackningsmaterial, då det är relativt enkelt att framställa produkter i många olika former till ett lågt pris. Däremot är de flesta plaster som idag används storskaligt inte nedbrytbara i naturen, och tillverkas från råvara som inte är förnyelsebar. Av dessa skäl vore det önskvärt att byta ut de traditionella plastmaterialen mot andra material som är biologiskt nedbrytbara och från förnyelsebara källor. Cellulosa, det material som tillverkas av levande organismer i störst skala, är en klar kandidat. Detfinns dock utmaningar med att byta ut plaster mot cellulosa, såsom cellulosans låga töjbarhet och formbarhet. Det pågår forskning som syftar till att öka töjbarheten och formbarheten på olika sätt. En sätt att öka mängden förnyelsebar råvara i ett producerat material är att utnyttja cellulosans styvhet och styrka för att förbättra den mekaniska hållfastheten hos en komposit. För att till fullo utnyttja cellulosans potential krävs en grundläggande förståelse för interaktionen över gränsskikt mellan olika komponenter inom ett material. Den här avhandlingens huvudsakliga syfte vara att ta fram strategier för att mäta och styra interaktionen över ett gränsskikt. Polymerer, dvs. långa kedjelika molekyler, designades och framställdes. Dessa polymerer kunde användas för att modifiera ytor och uppnå en vidhäftningsförmåga i vått tillstånd som var lika stark som hos musselfotprotein. Många egenskaper hos fogen kunde finjusteras genom att variera längd och struktur hos polymeren och mängdpolymer som applicerades på ytorna. En metod för att tillförlitligt utvärdera interaktionen mellan en kemiskt modifierad cellulosayta och en annan yta utarbetades, genom att använda mycket släta cellulosasfärer (ytråhet på nanometerskala) och samtidigt bulkegenskaper hosmaterialet. Två kompositmaterial med cellulosa som förstärkande komponenet framställdes, där olika strategier utnyttjades för att kontrollera och förbättra interaktionen mellan komponenterna i kompositmaterialet. Sammantaget bidrar detta till kunskapen om hur interaktionen över ett gränsskikt kan styras och mätas.

urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263075